Mercenary ants defend agricultural society



Often superior to citizen soldiers, mercenaries have played an important role in human conflicts since ancient times. A research team working at STRI discovered that a species of agriculturalist ants, Sericomyrmex amabilis, hosts a species of better-armed mercenary ants, Megalomyrmex symmetochus, who come to their rescue when their fungal gardens are invaded.

“Newly mated queens of the parasitic mercenary ants stealthily enter and establish their colonies in the gardens of the fungus-growing host ants,” said Rachelle Adams from Jacobus Boomsma’s lab at the University of Copenhagen. Adams is lead-author of the report published last week in PNAS.

With co-authors from Copenhagen and from the Department of Chemistry at the Virginia Military Institute, she found that the parasitic mercenary ants use their potent chemicals called alkaloids to defend host colonies against the raiding predatory ants, Gnamptogenys hartmani. The raiders can take over Sericomyrmex fungal gardens and nests.

During an attack, the mercenaries proved to be much more efficient than the host ants at killing the raiding predators. Even a moderate number of parasitic guest ants can provide protection against predatory attacks, effectively reducing host ant mortality.

However, the host ants pay a high price for the help. The mercenaries hamper host colony growth by feeding on the brood–the eggs and larvae–and by clipping the wings of host virgin queens, possibly to retain them as an additional work-force rather than let them disperse.

In addition, the authors show that raider ant scouts prefer to recruit to the colonies of the fungus-farming ants whose odor indicated that no mercenary ants were inside.

The inspiration for this project was a direct outcome of the University of Copenhagen and STRI supported graduate course, Tropical Behavioral Ecology and Evolution, offered in 2011, 2013 and planned for 2015. Two Copenhagen students from the 2011 course are junior authors on the study.

Adams, R.M.M., Liberti, J., Illum, A.A., Jones, T.H., Nash, D.R. and Boomsma, J.J. 2013. Chemically armed mercenary ants protect fungus-farming societies PNAS

Tropical Forests “Fix” Themselves

a view of the Forest in Panama
a view of the Forest in Panama
Soberania National Park
Soberania National Park

From Stri

Tropical forests speed their own recovery, capturing nitrogen and carbon faster after being logged or cleared for agriculture. Researchers working at the Smithsonian Tropical Research Institute in Panama think the discovery that trees “turn up” their ability to capture or “fix” nitrogen from the air and release it into the soil as the forest makes a comeback has far-reaching implications for forest restoration projects to mitigate global warming.

“This is the first solid case showing how nitrogen fixation by tropical trees directly affects the rate of carbon recovery after agricultural fields are abandoned,” said Jefferson Hall, STRI staff scientist. “Trees turn nitrogen fixation on and off according to the need for nitrogen in the system.”

The researchers’ findings suggest that the role of tropical forests in offsetting the atmospheric buildup of carbon from fossil fuels depends on tree diversity. Though legumes are not specifically coveted or threatened, forest degradation comes with a general loss of biodiversity. The essential role of legumes in tropical-forest health and speed-of-recovery implies that if their numbers plummet then the health of the surrounding forest would likely be affected for a very long time. The photo above is of a tropical forest on Barro Colorado Island, Panama. Photo courtesy of the Smithsonian Tropical Research Institute.

Hall directs the Agua Salud Project, an experiment spanning more than a square mile of the Panama Canal watershed. Researchers compare land-use options, measuring carbon storage, runoff and biodiversity to find out how mature tropical forest, native trees in forest restoration plots and abandoned pastureland compare. The project hosted the collaboration between scientists at Princeton University, Wageningen University, the University of Copenhagen, Yale University and STRI to explore the relationship between nitrogen fixation and carbon storage.

They compared the tree growth rate and nitrogen levels on pastureland abandoned two, 12, 30 and 80 years ago with trees growing in mature forests. Tree species that “fixed” nitrogen from the atmosphere put on carbon weight up to nine times faster than their non-fixing neighbors during early stages of forest recovery. Nitrogen-fixers provided enough nitrogen fertilizer in the soil to facilitate storage of 50,000 kilograms of carbon per hectare during the first 12 years of growth.

“Diversity really matters,” said the study’s first author, Sarah Batterman, who worked collaboratively on the project with Lars Hedin at Princeton University. “Each tree species fixes nitrogen and carbon differently so species important at 12 years drop out or become less common at 30 years. You can really see how different players contribute to the development of a mature tropical forest and the ecosystem services it provides.”

Reference: Batterman, S.A., Hedin, L.O., van Breugel, M., Ransjin, J., Craven, D.J., Hall, J.S. 2013. Key role of symbiotic N2 fixation in tropical forest secondary succession. Nature. doi:10.1038/nature12525